Dynamic Difficulty Adjustment (DDA) as Inspiration for Game Audio

11 Feb. '25

Introduction

Difficulty

Important aspect of game design.

Matching level of challenge → *higher entertainment*

(Sweetser & Wyeth, 2005, Lach, 2017)

Difficulty

Important aspect of game design.

State of flow = an enjoyable state with peak productivity, complete immersion

(Csikszentmihalyi, 1990, Koster, 2004, Sweetser & Wyeth, 2005, Lach, 2017)

Static difficulty level of games

- problems with **static difficulty** levels
 - o coarse and broad → do not suit the actual level of the player

(2018, Chayer, 2014, Hunicke & Chapman, 2004, Lach, 2017, Glassner, 2001, Andrade et al., 2005)

Difficulty

Important aspect of game design.

Adapting to players' flow zones by, e.g.:

- Offering many choices
- Applying dynamic difficulty adjustment (DDA)

"... a technique of **automatic real-time adjustment** of scenarios, parameters, and behaviors in video games, which **follows the player's skill** and keeps them from boredom or frustration."

Two main components:

- Difficulty adjustment mechanism
- Player assessment mechanism

(Zohaib, 2018, Adams, 2014)

Example 1

Monitoring game statistics - predefined metrics, e.g. number of failures

Supply of inventory mechanics, like health, ammunition, shielding, weapons

- # items in the field
- Items & player properties

Demand

• E.g. properties of enemies

Example 2

Experienced difficulty estimation based on gameplay features and pupillometry measurements.

Difficulty adjustment mechanism,

'Adaptive game components'

- Attributes
- Behavior
- Game level/-world layout
- Events
- Scenario and narrative
- Gameplay mechanics

(Hunicke, 2005, Lopes & Bidarra, 2011, Bontchev et al., 2016, Zohaïb, 2018, Sepulveda et al. 2019)

Player assessment mechanism

E.g. player experience modeling

- Gameplay data
- Game context data
- Objective
- Player profile
- Linked data

(Lopes & Bidarra, 2011, Yannakakis & Togelius, 2013, Bontchev et al., 2016, , Yannakakis & Togelius, 2018, Zohaïb, 2018, Sepulveda et al. 2019, Paraschos & Koulouriotis, 2022, Lopes & Lopes, 2022)

Overlap with Game Audio

Using a (combined) parameter to alter the game audio

Overlap with Game Audio

Using a (combined) parameter to alter the game audio.

\rightarrow DDA as inspiration for Game audio

Challenge & difficulty

DDA requirements

DDA aspects

INVENTORY SKILLS

MA

LI

DDA - Game difficulty

Difficulty types

- Absolute difficulty
 = Required intrinsic skill + Imposed stress
- Relative difficulty = absolute difficulty - power provided

INVENTORY SKILLS

LI

DDA - Game difficulty

Difficulty types

- Absolute difficulty
 = Required intrinsic skill + Imposed stress
- Relative difficulty = absolute difficulty - power provided

In perspective to Game audio?

Reflect & Discuss with neighbor

INVENTORY SKILLS

LI

DDA - Game difficulty

Difficulty types

- Absolute difficulty
 = Required intrinsic skill + Imposed stress
- Relative difficulty
 = (power provided + in_game experience)
- Perceived difficulty = absolute difficulty - relative difficulty

Absolute- & relative difficulty → Game audio as (additional) **feedback channel**? Perceived difficulty → Game audio - '**Affect**'

Imposed stress benadrukken met muziek.

DDA - Game difficulty

Challenge hierarchy

- Topmost-level
 - level / game victory condition
- Intermediate-level
 - implicit
 - o strategy
- Lowest-level
 - atomic challenges

(Adams, 2014)

Game features selection

DDA - Game difficulty

Challenge hierarchy

- Topmost-level
 - level / game victory condition
- Intermediate-level
 - implicit
 - o strategy
- Lowest-level
 - atomic challenges

In perspective to Game audio?

Reflect & Discuss with neighbor

DDA - Game difficulty

Challenge hierarchy

- Topmost-level
 - level / game victory condition
- Intermediate-level
 - implicit
 - strategy
- Lowest-level
 - atomic challenges

Lowest-level - atomic challenges → sound design Topmost-level → 'Victory muziek' bij behalen Intermediate-level → reageren op de toegepaste strategieën

Noticeable rubber banding in racing games

Screenshot from Mario Kart 8 (Nintendo EAD, 2014)

DDA - Three basic requirements

- 1. **Quick identification** and adaptation to initial player's level
- Fast and close tracking of and adaptation the player's improvement or falling level
- 3. **Unperceivable adaptation** process and game must remain believable

(Andrade et al., 2005, Adams & Dormans, 2012, Fernandes & Levieux, 2019)

Noticeable rubber banding in racing games

Screenshot from Mario Kart 8 (Nintendo EAD, 2014)

DDA - Three basic requirements

- 1. **Quick identification** and adaptation to initial player's level
- Fast and close tracking of and adaptation the player's improvement or falling level
- 3. **Unperceivable adaptation** process and game must remain believable

In perspective to Game audio?

Reflect & Discuss with neighbor

DDA - Three basic requirements

- 1. **Quick identification** and adaptation to initial player's level
- Fast and close tracking of and adaptation the player's improvement or falling level
- 3. **Unperceivable adaptation** process and game must remain believable

Noticeable rubber banding in racing games

Screenshot from Mario Kart 8 (Nintendo EAD, 2014)

Harde schakel van state → perceivable adaptation van de muziek, maar anders unperceivable?

Probabilistic method

Examples

"Dynamic difficulty adjustment through parameter manipulation for Space Shooter game"

1. Probabilistic methods

Space shooter game

- Assessment probabilistic calculation
 - damage suffered in a given time (t)
 - amount of life
 - ightarrow estimated death at a future time
- Adjustment according to current **zone**
 - comfort zone
 - flow zone
 - discomfort zone
- Parameter manipulation
 - supply
 - demand

"Dynamic difficulty adjustment through parameter manipulation for Space Shooter game"

1. Probabilistic methods

Space shooter game

- User study three versions tested:
 - easy game
 - dynamic game
 - difficult game

Results

- DDA achieved best results, regarding
 - playability
 - the will to play often

Single & multilayered perceptrons

Examples

"(a) Architecture of a single layer perceptron. …

(b) Extension to a multi-layer perceptron including more than one layer of trainable weights. ...

Each connection between two neurons is given by a certain weight."

2. Single & multilayered perceptrons

Single perceptron vs multilayered perceptrons

- single perceptron = easier to analyze
- multilayered perceptron = higher accuracy of the function approximation

(Camuñas-Mesa et al., 2019)

"Modeling Player Experience in Super Mario Bros"

2. Single & multilayered perceptrons

2D platform game

Single-neuron (perceptron) neural network:

- input:
 - gameplay (player behavior)
 e.g. # coins gathered, #deaths by jump in gap
 - design parameters (*controllable features*)
 - gap placement
 - gap size
 - gap spatial diversity
 - # direction switches
- output:
 - player's emotions
 - frustration
 - fun
 - challenge

"Modeling Player Experience in Super Mario Bros"

2. Single & multilayered perceptrons

2D platform game

- Evolutionary preference learning
- 3 feature selection methods applied

 \rightarrow interested in the minimal feature subset that yields the highest performance

 \rightarrow subset used in follow up research

Results:

• High accuracy of prediction of challenge (77.77%), frustration (88.66%), and fun (69.18%)

2. Single & multilayered perceptrons

2D platform game

Follow up study (1)

Step 1. single layer perceptron:

- player experience **6 affective states** (fun, challenging, boring, frustrating, predictable, anxious)
- 4 feature selection methods applied

2. Single & multilayered perceptrons

2D platform game

Step 2. multi-layer perceptrons

- **MLP topologies** of 2 hidden layers, up to 30 and 10 hidden neurons, *in total 330 different topologies*
- tested for each input vector
 - feature set selected from SLPs
 - remaining controllable features

The performance of the SLP networks is compared to MLPs built on selected features:

• MLP_s - selected features

• *MLP_c* - controllable features

• *MLP* - selected and forced controllable features combined

2. Single & multilayered perceptrons

2D platform game

Step 2. multi-layer perceptrons

- **MLP topologies** of 2 hidden layers, up to 30 and 10 hidden neurons, *in total 330 different topologies*
- tested for each input vector

	Fun	Challenge	Frustration	Predictability	Anxiety	Boredom
MLP Topology	6-2-2-1	9-3-1	8-10-10-1	10-4-6-1	8-5-3-1	6-21-10-1
SLP	69.18%	77.77%	88.66%	76.28%	70.63%	60.87%
MLP _s	74.84%	78.84%	87.33%	80.13%	75.40%	67.39%
MLP_c	66.04%	74.60%	78.67%	68.59%	73.02%	70.29%
MLP	74.21%	79.37%	91.33%	76.28%	77.78%	73.19%

(Pederson et al., 2010)

2. Single & multilayered perceptrons

2D platform game

Follow up study (2)

- multilayered perceptron (MLP)
- **dynamic adaptation** of level generation parameters (#gaps, avg. width gaps, gap placement, #direction switches)
- small search space
 - 12000 configurations
 - find combination with max MLP output
 - allows real time level generation
"Modeling Player Experience for Content Creation"

2. Single & multilayered perceptrons

2D platform game

Tested with:

- 2 **AI agents** with different play styles
- 4 participants (pilot)

Results:

 "model robustly adapts to an individual player generalizing over various kinds of players" (AI & participants)

"Polymorph: A Model for Dynamic Level Generation"

List of in-game actions

2. Single & multilayered perceptrons

2D platform game

Dynamic constructing levels with continually-appropriate challenge:

- multilayer perceptron model
- input:
 - gameplay features, *e.g. 'whether the player died or completed a segment'*
 - level parameters:
 - occurrences of level components,
 e.g. #upward-rising gaps
 - occurrences of two-component adjacencies, *e.g. gap-enemy*

Results:

- accuracy of 66.4% for difficulty is less accurate 77% in Pederson et al. 2009
- however, examination of component combinations is possible (Jenninas-Teats et al., 2010)

"Polymorph: A Model for Dynamic Level Generation"

Feature	Correlation coefficient
Gap_Kill	0.7749
JumpUp	0.7095
Gap_Gap	0.6765
Gap_Avoid	0.6177
FlatGap	-0.5316
KillEnemy	-0.5222
Avoid	0.3818
JumpDownGap	0.3219
JumpUpGap	-0.0842
Avoid_Thwomp	0.0709

Ten most highly correlated features. Underscores indicate adjacent components.

2. Single & multilayered perceptrons

2D platform game

Results:

- Allows for examination of component combinations
- Accuracy of 66.4% for difficulty is less accurate 77% in Pederson et al. 2009

"A Generic Framework for Procedural Generation of Gameplay Sessions"

A gameplay session of the game Boney the Runner.

2. Single & multilayered perceptrons

2D platform game

Content generation for endless games

- Chunk-based approach (chunk = playable segment with fixed width and heights)
- 4-step level generation process
 - 1. definition of difficulty curve
 - 2. chunk generation
 - 3. chunk evaluation
 - 4. chunk insertion

"A Generic Framework for Procedural Generation of Gameplay Sessions"

A gameplay session of the game Boney the Runner.

2. Single & multilayered perceptrons

2D platform game

- Difficulty based on time that player has lost on each chunk
- Two multilayered networks (1 hidden layer):
 - A. input: controllable features
 - B. input: controllable features & non-controllable features.
 - A & B output: chunk difficulty
- Network A: initial stages of development, only access to controllable features from the chunks

"A Generic Framework for Procedural Generation of Gameplay Sessions"

A gameplay session of the game Boney the Runner.

2. Single & multilayered perceptrons

2D platform game

Results:

- 70% accuracy network A. *(controllable features only)*
- 90% accuracy network B
- 52% accuracy human designer

Dynamic scripting

Examples

"Online Adaptation Of Game Opponent Ai With Dynamic Scripting"

The dynamic scripting process.

3. Dynamic scripting

'Complex' RPG

Rulebases *(1 for each opponent type)* used to dynamically generate **scripts for NPCs**

- after an encounter → weights are changed
 - weights of rules that lead to success are increased
 - weights of rules that lead to failure are decreased
 - weights of other rules → updated maintain unchanged sum of weights
- Weight change size determined by weight-update function

The dynamic scripting process.

3. Dynamic scripting

'Complex' RPG

- High-fitness penalizing
- Weight clipping
- Top culling

The dynamic scripting process.

3. Dynamic scripting

'Complex' RPG

- High-fitness penalizing
 - highest rewards to mediocre fitness values
 - lower rewards or penalties to high fitness values
- Weight clipping
- Top culling

The dynamic scripting process.

3. Dynamic scripting

'Complex' RPG

- High-fitness penalizing
- Weight clipping
 - automatically varying the maximum weight value
 - $\circ \quad \mbox{high max weight values} \rightarrow \mbox{lead to} \\ \mbox{scripts that are close to optimal} \\$
 - o low max weight values → enforces high diversity in generated scripts, most not optimal
- Top culling

The dynamic scripting process.

3. Dynamic scripting

'Complex' RPG

- High-fitness penalizing
- Weight clipping
- Top culling:
 - similar to weight clipping
 - o allows weights to grow beyond the max value → rules will not be selected anymore (thus weaker tactics will be selected)

The dynamic scripting process.

3. Dynamic scripting

'Complex' RPG

Results:

- DDA by dynamic scripting is effective
- Weight clipping & Top culling successful
- high-fitness penalizing unsuccessful

Reinforcement Learning

Examples

"AI for Dynamic Difficulty Adjustment in Games"

A reinforcement learning example (based on image from Yannakakis & Togelius, 2018)

5. Reinforcement Learning

Theoretical background

"Reinforcement learning ... refers to methods that solve reinforcement learning problems, where a **sequence of actions is associated with positive or negative rewards** ..."

"... inspired by ... the way humans and animals learn to take decisions via (positive or negative) **rewards received by their environment**."

"Artificial Intelligence and Games"

A reinforcement learning example (based on image from Yannakakis & Togelius, 2018)

5. Reinforcement Learning

Theoretical background

"Through the **continuous interaction** between the agent and its environment, the agent gradually learns to select actions that **maximize its sum of rewards**"

At point in time t

- Agent:
 - State s
 - Decides on action *a*

from all available actions in current state

- Environment delivers response:
 - Immediate reward *r*

"Making Racing Fun Through Player Modeling and Track Evolution"

5. Reinforcement Learning

Racing game

Adaptive game AI can create varied gaming experiences for different playing styles:

- + adds interest
- + adds repeatability of play

E.g. evolutionary algorithms to **create racing tracks tailor-mad**e to maximize enjoyment of individual player.

Score: red 0.0, blue 0.0	
Scoreboar	đ
Second waypoint	
Current waypoint	

Playing area for simulated car racing.

5. Reinforcement Learning

Racing game

- Objective = development of an adaptive game AI:
 - promotes even game (more enjoyable)
 rather than beating opponents.
 - adapts its behavior according to opponent's moves
 - **real time** difficulty scaling

a Score: red 0.0, blue 0.0	
Score	board
Second waypoint	2
Current waypoint	

Playing area for simulated car racing.

5. Reinforcement Learning

Racing game

Two adaptive algorithms presented, use ideas from:

- reinforcement learning
- evolutionary computation

Two indicators as **measure of** entertainment value:

- winning percentage difference (|W-L| and D to be minimized, where W, L, and D are wins, losses, and draws)
- mean score difference (|s1-s2| to be minimized and max(s1,s2), where s are

(*[s1-s2]* to be minimized and max(*s1,s2*), where *s* are scores of players 1 and 2)

■ Score: red 0.0, blue 0.0	
Scoreb	oard
Second waypoint	r
Current waypoint	

Playing area for simulated car racing.

5. Reinforcement Learning

Racing game

Artificial Stupidity: fine tuning of a game AI such that it provides the player with an entertaining experience by deliberately making mistakes (intentional, but plausible)

Controller adaptation approach:

- Start with **'overdesigned' game AI** :
 - good set of game behavior components
 - able to defeat player
- Estimate player's competency
- Progressively **select subset** of behavior components

1	2	3	4	5	6	7
0.8	0.6	0.1	0.3	0.9	0.5	0.2

Representation of the chromosome used in the Adaptive Uni-Chromosome Controller

5. Reinforcement Learning

Racing game

Adaptive Uni-Chromosome Controller (AUC)

- online training & adaptation process
- chromosome:
 - encodes the probability ([0, 1]) for activating a behavior component after waypoint passing
- assumption complement of winning strategy == losing strategy
- ruleset updates:
 - o after controller loss / draw → winning chromosome
 - o after controller winning → complement of winning chromosome

1	2	3	4	5	6	7
0.8	0.6	0.1	0.3	0.9	0.5	0.2

Representation of the chromosome used in the Adaptive Uni-Chromosome Controller.

5. Reinforcement Learning

Racing game

Adaptive Duo-Chromosome Controller (ADC)

- maintains two sets of chromosome:
 - winning chromosome
 - losing chromosome
- assumption complement of winning strategy != losing strategy

1	2	3	4	5	6	7
0.8	0.6	0.1	0.3	0.9	0.5	0.2

Representation of the chromosome used in the Adaptive Uni-Chromosome Controller.

5. Reinforcement Learning

Racing game

AUC and ADC tested against static controllers to simulate players with different styles of play.

"Dynamic Game Difficulty Scaling Using Adaptive Behavior-Based AI"

1	2	3	4	5	6	7
0.8	0.6	0.1	0.3	0.9	0.5	0.2

Representation of the chromosome used in the Adaptive Uni-Chromosome Controller.

5. Reinforcement Learning

Racing game

Results

- able to learn proper set of behavior components
- able to generalize satisfactory for various opponents
- achieved score differences of 4 or less in > 72% of the games
- scattered wins and losses
- final set of chromosomes showed various component combinations to deal with different styles
- ADC lower #drawn games

"MPRL: Multiple-Periodic Reinforcement Learning for Difficulty Adjustment in Rehabilitation Games"

The architecture of MPRL where different goals are evaluated in separate periodS.

5. Reinforcement Learning

Rehabilitation game

Personalized DDA method for rehab based on real-time patient's skills

- DDa was argued to be a multiple-goal problem
- multiple objectives:
 - satisfaction
 - engagement
 - perceiving a progress
- Multiple-Objective Reinforcement learning insufficient due to different measurement periods of objectives
 → proposed Multiple-Periodic Reinforcement Learning

"MPRL: Multiple-Periodic Reinforcement Learning for Difficulty Adjustment in Rehabilitation Games"

The architecture of MPRL where different goals are evaluated in separate periodS.

5. Reinforcement Learning

Rehabilitation game

Results

Multiple-Periodic Reinforcement
 Learning performed better than
 Multiple-Objective Reinforcement
 learning methods in user satisfaction
 and enhancing patient motor skills

Theoretical background

Monte Carlo tree search:

- a probabilistic and heuristic driven search algorithm
- combination of
 - classic tree search implementations
 - machine learning principles of reinforcement learning

"To Create Intelligent Adaptive Game Opponent by Using Monte-Carlo for Tree Search"

6. Upper Confidence Bound for Trees and Artificial Neural Networks

Predator-prey game

- MCTS performance significantly correlates with the duration of simulation
 - after time threshold value performance decreases down to a stable state

Simplified Interface of Video Game Pac-Man

"To Create Intelligent Adaptive Game Opponent by Using Monte-Carlo for Tree Search"

Simplified Interface of Video Game Pac-Man

6. Upper Confidence Bound for Trees and Artificial Neural Networks

Predator-prey game

- MCTS performance significantly correlates with the duration of simulation
 - after time threshold value performance decreases down to a stable state
- Not able to use MCTS realtime due to computational intensiveness
 - Transform MCTS → ANN
 Three ANNs were trained with MCTS
 created data against three different
 types of simulated players

Four different distributions to demonstrate the Multi-Armed Bandit Problem

6. Upper Confidence Bound for Trees and Artificial Neural Networks

Theoretical background

Upper confidence Bound solves the **Multi-Armed Bandit Problem**

- multiple **unknown distributions**
- aim: find the best distribution

e.g. multiple slot machines and find the machine with highest winnings - how much time should you:

- **explore**, which machine is the best?
- **exploit**, the machine you think is best?

Four different distributions to demonstrate the Multi-Armed Bandit Problem

6. Upper Confidence Bound for Trees and Artificial Neural Networks

Theoretical background

Epsilon Greedy strategy

e.g. with Epsilon 10%:

- 10% chance to explore
- 90% chance to exploit current learned distributions *(choose 'the best' distribution up to now)*

 $\pi(a|s) = \begin{cases} \text{with probability } \epsilon, & \text{Do Exploration: } Randomly \text{ pick an action for this state} \\ \text{with probability } 1 - \epsilon, & \text{Do Exploitation: } Greedily \text{ pick an action for this state} \\ & a = \arg \max_a Q(s, a) \end{cases}$

Four different distributions to demonstrate the Multi-Armed Bandit Problem

6. Upper Confidence Bound for Trees and Artificial Neural Networks

Theoretical background

Upper confidence Bound

Epsilon Greedy Strategy exploitation is **used 'extended' with upper confidence bound**, to **balance exploration and exploitation**:

low exploration for action a?

- \rightarrow denominator is lower
- \rightarrow quantity second term is higher
- \rightarrow higher chance to explore a

$$A_t = rgmax_a \Biggl[Q_t(a) + c \sqrt{rac{\log t}{N_t(a)}} \Biggr]$$

image from https://www.mltut.com/upper-confidence-bound-reinforcement-learning-super-easy-guide

Theoretical background

Monte Carlo tree search:

- a probabilistic and heuristic driven search algorithm
- combination of
 - classic tree search implementations
 - machine learning principles of reinforcement learning

Upper confidence Bound for Trees (UCT)

one of the most popular and generally effective **Monte Carlo tree search** (MCTS).

"To create DDA by the approach of ANN from UCT-created data"

Predator-prey game

- UCT **performance** significantly correlates with the **duration of simulation**
 - usable for 'DDA agent' by limiting computation time!
- Not able to use UCT realtime due to computational intensiveness
 - Transform UCT → ANN
 ANNs were trained with UCT created
 data with different simulation time

DDA from UCT and DDA from ANN

"To create DDA by the approach of ANN from UCT-created data"

Predator-prey game

- ANN performance depends on training data quality
 - → ANN training remains poor
 - $\circ \quad \text{ample incidences for all routes} \\ \rightarrow \text{trained ANN performs well}$
- Increasing the growth of simulation time
 - \rightarrow the UCT data achieve greater precision
 - \rightarrow better trained ANN

DDA from UCT and DDA from ANN
"To create DDA by the approach of ANN from UCT-created data"

6. Upper Confidence Bound for Trees and Artificial Neural Networks

Predator-prey game

Results

- UCT can be applied in DDA in offline games by adjusting simulation time
- UCT can create data to train ANN
- ANNs trained with UCT created data (trained with data generated with UCTs trained with different simulation times) can be applied in DDA in offline & online games

DDA from UCT and DDA from ANN

"A data-driven approach for online adaptation of game difficulty"

Dynamic Adaptation Framework

6. Upper Confidence Bound for Trees and Artificial Neural Networks

multi-agent serious training game

a data-driven approach for DDA of game scenarios

- by game designer specified difficulty preferences at different periods of time
- difficulty is inferred from dynamically measured performance value
- goal = fit the predicted experienced difficulty to the desired difficulty

Results:

• Experiment demonstrated the efficacy and stability of the suggested approach.

7. Self-Organizing System and Artificial Neural Networks

7. Self-Organizing System and Artificial Neural Networks

predator-prey game

Self-organizing system (SOS) of NPCs to adjust difficulty level of games

• Interactive evolutionary algorithm to evolve Non-Player Characters (NPCs)

The proposed system

The Pacman testbed game.

7. Self-Organizing System and Artificial Neural Networks

predator-prey game

Neuroevolutionary controller for each ghost to adapt to the different skill levels of the players

 movement based on environmental precepts

The Pacman testbed game.

7. Self-Organizing System and Artificial Neural Networks

predator-prey game

Ghost controlled by fully connected feedforward neural network with a hidden layer

- default:
 - 4 inputs (*normalized*),
 - relative distance pacman x, y
 - relative distance closest ghost x, y
 - 4 outputs movement options (probabilities)
 - 5 neurons in the hidden layer
 - connections [-1, 1]

The Pacman testbed game.

7. Self-Organizing System and Artificial Neural Networks

predator-prey game

Offline learning (to create chromosomes that perform better than random chromosomes)

- **Cooperative Coevolution** Algorithm to train offline
 - chromosomes subpopulation for every ghost
 - best performers in every subgroup are chosen as representatives
 - chromosomes of one subgroup are tested together with the representatives of the other subgroups

The Pacman testbed game.

7. Self-Organizing System and Artificial Neural Networks

predator-prey game

Online learning

- Median controllers are loaded in ghosts at start of the game (*intermediate*)
- Interactive Evolutionary Computation (IEC) → fitness function replaced by human evaluation
 - assessed indirectly by reviewing player's feedbacks

calculated ideal key presses for distance traveled by Pacman, compared to actual key presses, occasions of key switches, wall hits, etc.

Cost-based

Distance-based

7. Self-Organizing System and Artificial Neural Networks

predator-prey game

Four types of Pacman agents **varying intelligence levels**:

- cost-based considers state of neighbor cells
- nearest distance-based considers max distance to nearest ghost
- distance-based considers distance to all ghosts
- random

Results

• SOS can adapt itself with different level of skills

(Ebrahimi & Akbarzadeh-T, 2014)

"Real-time challenge balance in an RTS game using rtNEAT"

Globulation 2 test-bed game: screenshot during a combat.

7. Self-Organizing System and Artificial Neural Networks

real-time strategy (RTS) game

- Neuro-Evolution of Augmenting Topologies (NEAT)
- real-time Neat (rtNEAT)

... neuro-evolution methodologies are used to generate intelligent opponents

- NEAT adjusts both the connection weights and the topology of the network, thus it can:
 - modify value of the connection weights
 - \circ add / remove nodes and connections

"Real-time challenge balance in an RTS game using rtNEAT"

Globulation 2 test-bed game: screenshot during a combat.

7. Self-Organizing System and Artificial Neural Networks

real-time strategy (RTS) game

- Neuro-Evolution of Augmenting Topologies (NEAT)
- real-time Neat (rtNEAT)

... neuro-evolution methodologies are used to generate intelligent opponents

Results:

- effectiveness of NEAT and rtNEAT is indicated
- however, limitations for use in real-time strategy games

(Olesen et al., 2008)

8. Affective Modeling Using EEG

"EEG-triggered dynamic difficulty adjustment for multiplayer games"

8. Affective Modeling Using EEG

third-person shooter game

Personal **excitement** level was monitored with an EEG¹ headset.

Experiment 1

• investigation of the **relationship** between **EEG signals** and **game events**

Results experiment 1

• correlation between the indicator for short term excitement and game events

"EEG-triggered dynamic difficulty adjustment for multiplayer games"

A screenshot from the customized version of the Boot Camp game.

8. Affective Modeling Using EEG

third-person shooter game

DDA chooses **modifications in favor of the weaker player** (*kill ratio*).

Experiment 2 - **comparison**:

- triggering of DDA modifications based on EEG *decrease of excitement*
- triggering of DDA modifications based on typical heuristics *(elapsed duration, game status)*
- control game without DDA

Results experiment 2

• triggering of DDA modifications based on EEG increases player's excitement and improving gaming experience

"Dynamic difficulty using brain metrics of workload"

Diagram of the closed-loop dynamic difficulty adaptation engine. Raw signals acquired the fNIRS device are filtered, then used to classify user workload. When confident that the user is in a suboptimal state, UAVs are added / removed in order to provide the right amount of work.

8. Affective Modeling Using EEG

path planning task

Detection of extended **periods of boredom or overload** by collecting passive brain sensing information with functional near-infrared spectroscopy (fNIRS)

"Dynamic difficulty using brain metrics of workload"

Diagram of the closed-loop dynamic difficulty adaptation engine. Raw signals acquired the fNIRS device are filtered, then used to classify user workload. When confident that the user is in a suboptimal state, UAVs are added / removed in order to provide the right amount of work.

8. Affective Modeling Using EEG

path planning task

Laboratory study:

- participants performed path planning for multiple unmanned aerial vehicles (UAVs) in a simulation.
- based on participant's state the task difficulty was varied by adding / removing UAVs

Results

- fNIRS brain sensing can be used to:
 - detect real-time task difficulty in real-time
 - construct an interface that improves user performance through DDA

(Afergan et al., 2014)

"Adaptable game experience based on player's performance and EEG"

Rhythm Representation. Illustrated example of a rhythm and different geometry representations for a single rhythm.

8. Affective Modeling Using EEG

2D platform game

Procedural content development approach with the Rhythm-Group Theory to build varying platform levels.

DDA controlled by a combination of:

- player's performance
- attention values based on EEG data

"Adaptable game experience based on player's performance and EEG"

Rhythm Representation. Illustrated example of a rhythm and different geometry representations for a single rhythm.

8. Affective Modeling Using EEG

2D platform game

Experiment: participants performed 5 automatically created levels based on their performance and estimated attention (EEG data).

Results

• The tested method is capable of adapting the difficulty of a level according to the player's status, using values calculated in realtime.